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Abstract

Functional ANOVA (Analysis of variance) appears in Statistics and
System Theory. It is a particular orthogonal splitting of the vector space
of square-integrable random variables on a product space. When the
sample space is factorial, it conveniently splits the fibres of the affine
bundle consisting of couples of probability functions and Fisher’s scores,
which we call the statistical bundle. One of the terms in the splitting is
the additive model, while the other is related to the transportation model
with fixed margins. This concept is known in the classical theory of
contingency tables. We rephrase it and show implications to algebraic
statistics, information geometry, and Kantorovich optimal transport. In
this setting, the gradient flow in the transport sub-model has a limit
point that solves the Kantorovich problem.

keywords: ANOVA, statistical bundle, gradient flow, additive and
transportation model, Kantorovich problem.
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PART 1

ANOVA and Affine Statistical Bundle



ANOVA with two non-independent factors I
• Consider a product finite sample space Ω = Ω1 × Ω2. The generic

probability function is denoted

q : Ω1 × Ω2 ∋ (x1, x2) 7→ q(x1, x2) .

We denote the two margins by

q1(x1) =
∑
y∈Ω2

f (x1, y) , q2(x2) =
∑
y∈Ω1

q(y , x2) .

• For each probability function q and each random variable u ∈ L2(q)
we look for q-orthogonal decomposition of the form

u(x1, x2) = u0 + (u1(x1) + u2(x2)) + u12(x1, x2)

• Notice that we do not require u1 ⊥ u2 as it is done in Hajek:1968
and Sobol’:2001. Cf. also Efron and Stein 1981.

• We call factors the two marginal projections of the sample space,

X1 : (x1, x2) 7→ x1 , X2 : (x1, x2) 7→ x2 .



ANOVA with two non-independent factors II

• Cf. Lauritzen 1996 and Sergeant-Pethuis 2021.

• Consider the subsets I ⊂ {1, 2}, partially ordered by inclusion, that
is,

∅ ≺ {1} , {2} ≺ {1, 2} .

• Each I ̸= ∅ is an interaction. Let XI be the components projection
on I , XI = (Xj : j ∈ I ).

• A q-effect is a random variable with zero q-mean. A q-effect of the
interaction I is a q-effect of the form f ◦ XI which is q-orthogonal
to all g ◦ XJ for all J ≺ I , that is, J ⊂ I and J ̸= I .

• The order of the interaction I is #I . Let Hk be the vector space
generated by the I -interactions of order k . H0 contains random
variables which do not depend on any Xj , j = 1, 2. that is, H0 = R.

• The space H1 is generated by the random variables of the form
f1 ◦ X1 and f2 ◦ X2 with

Eq [f1 ◦ X1] = Eq1 [f1] = 0 , Eq [f2 ◦ X2] = Eq2 [f2] = 0 .



ANOVA with two non-independent factors III

• An element of H1(q) is of the form

f1 ◦ X1 + f2 ◦ X2 , f1 ∈ L20(q1) , f2 ∈ L20(q2)

and the representation above is unique.

• An element of H2(q) is of the form f12 ◦ (X1,X2) and is orthogonal
to H∅,H{1},H{2}.

• The orthogonality with respect to H∅ implies zero q-expectation
Eq [f12] = 0.

• The orthogonality with respect to H∅ + H{1} and H∅ + H{2} is
equivalent to zero conditional expectation with respect to each
factor:

Eq (f12 ◦ (X1,X2)|X1) = 0 , Eq (f12 ◦ (X1,X2)|X2) = 0



ANOVA with two non-independent factors IV

• We have a q-orthogonal decomposition of f ∈ L2(q) of the form

0 = f0 ⊕ (f1 ◦ X1 + f2 ◦ X2)⊕ f12 ◦ (X1,X2)

with f0 ∈ H0, (f1 ◦ X1 + f2 ◦ X2) ∈ H1, and f12 ◦ (X1,X2) ∈ H2.

• Let f 7→ Hajek (q) f be the orthogonal projection of L2(q) onto H1,
the Hajek projection.

• The orthogonal decomposition of f ∈ L2(q) is computed as

f = Eq [f ]⊕ Hajek (q) f ⊕ (I−Eq − Hajek (q))f .

• The computation of the Hajek projection (cf. Pistone 2001) is a
least square problem in f0, f1, f2 with normal equations

Eq [f ] = f0

0 = f0 + f1 ◦ X1 + Eq (f2 ◦ X2|X1)

0 = f0 + Eq (f1 ◦ X1|X2) + f2 ◦ X2



Affine statistical bundle I

• The affine statistical bundle is a structure that describes the joint
geometry of probabilities and random variables. This justifies the
adjective ”statistical”.

• The geometry is affine in the sense of Weyl’s axioms: for each

couple of points P,Q ∈ M there is vector v =
−→
PQ in such a way

Q = P + v and
−→
PQ +

−→
QR =

−→
PR.

• We consider the set of couples (q, v) such that q is a positive
probability function, q ∈ P> (Ω), and v is a random variable whose
q-expectation is zero, v ∈ L20(q). The vector space L20(q) is the fibre
at q.

• We modify the original Weyl’s definition to allow for vector paces
depending on the base point.

Definition (Statistical bundle)

SP> (Ω) =
{
(q, v)

∣∣ q ∈ P> (Ω) , v ∈ L20(q)
}



Exponential chart I

• We define the exponential displacement from p ∈ P> (Ω) to
q ∈ P> (Ω) by

(p, q) 7→ sp(q) = log
q

p
− Ep

[
log

q

p

]
∈ L20(p) = SpP> (Ω) ,

and the exponential transport between fibres by

eUp
q : SqP> (Ω) ∋ v 7→ v − Ep [v ] ∈ SpP> (Ω) .

• The (generalised) parallelogram law holds true:(
log

q

p
− Ep

[
log

q

p

])
+ eUp

q

(
log

r

q
− Eq

[
log

r

q

])
=(

log
q

p
− Ep

[
log

q

p

])
+

(
log

r

q
− Ep

[
log

r

q

])
=

log
r

p
− Ep

[
log

r

p

]
.



Exponential chart II

• The inverse chart (the patch) s−1
p is defined on all of the fibre

SpP> (Ω) by

s−1
p (v) = exp (v − Kp(v)) · p = ep(v) , Kp(v) = logEp [e

v ] .

• The cumulant functional

Kp : SpP> (Ω) ∋ v 7→ Kp(v) = logEp [e
v ]

has several important properties.

• It is an expression in the affine chart of the Kullback-Leibler
divergence as a function of the second variable. If sp(q) = v , then

D (p ∥q) = Ep

[
log

p

q

]
= Ep

[
log

p

exp (v − Kp(v)) · p

]
= Kp(v) .



Mixture chart

• We define the mixture displacement from p ∈ P> (Ω) to
q ∈ P> (Ω) on by

(p, q) 7→ ηp(q) =
q

p
− 1 ∈ L20(p) = SpP> (Ω) ,

and the mixture transport between fibres by

mUq
p : SpP> (Ω) ∋ v 7→ p

q
v ∈ SpP> (Ω) .

• The (generalized) parallelogram law holds true(
q

p
− 1

)
+

q

p

(
r

q
− 1

)
=

(
r

p
− 1

)
.

• The inverse chart ηp(v) is defined for all v > −1, v ∈ SpP> (Ω), by

η−1
p (v) = (1 + v) · p .



Duality, velocity, gradient I

Duality

The exponential transport and the mixture transport are dual of each
other with respect to the L20 inner product, ⟨v ,w⟩p = Ep [vw ]. For all
v ∈ SqP> (Ω) and w ∈ SpP> (Ω) it holds〈

v , eUq
pw

〉
q
=

〈
mUp

qv ,w
〉
p
.

Affine velocity

The velocity in the chart at p of a smooth curve t 7→ q(t) ∈ P> (Ω) is

d

dt
sp(q(t)) =

d

dt

(
log

q(t)

p
− Ep

[
q(t)

p

])
=

q̇(t)

q(t)
− Ep

[
q̇(t)

q(t)

]
,

or
d

dt
ηp(q(t)) =

d

dt

(
q(t)

p
− 1

)
=

q̇(t)

p
.



Duality, velocity, gradient II

• In the moving frame p = q(t) the two representation are equal.
Such an expression of the velocity,

⋆
q(t) =

q̇(t)

q(t)
=

d

dt
log q(t) ,

equals the classical Fisher’s score. Notice that
⋆
q is a lift to the

bundle, t 7→ (q(t),
⋆
q(t)) ∈ SP> (Ω).

• The (natural) gradient of a smooth function ϕ : P> (Ω) → R is the
section gradϕ of the statistical bundle such that for all smooth
curve t 7→ q(t) it holds

d

dt
ϕ(q(t)) = ⟨gradϕ(q(t)), ⋆

q(y)⟩q(t) .

• The gradient flow of ϕ is the solution of the equation

⋆
q(t) = − gradΦ(q(t)) .



PART 2

Product sample space



Transport plans

• Assume a product sample space Ω = Ω1 × Ω2 and consider the
probability simplex P (Ω1 × Ω2). The two marginalisation mappings
are

Π1 : P (Ω1 × Ω2) ∋ q 7→
∑
x2∈Ω2

q(·, x2) ∈ P (Ω1)

Π2 : P (Ω1 × Ω2) ∋ q 7→
∑
x1∈Ω1

q(x1, ·) ∈ P (Ω2)

• Each q is a transport plan from q1 to q2 = q2|1q1.

• For each given q1 ∈ P (Ω1) and q2 ∈ P (Ω2) define the set of
transport plans as

Π(q1, q2) = {q ∈ P (Ω1 × Ω2) |Π1q = q1,Π2q = q2} .

• Π(q1, q2) is non-empty, convex, and closed. Cf. the algebraic
version in Pistone, Rapallo, Rogantin 2021.



Transport plans in P> (Ω1 × Ω2)
• For all q1 ∈ P> (Ω1) and q2 ∈ P> (Ω2) the set of positive transport

plans from q1 to q2 is

◦
Π (q1, q2) = {q ∈ P> (Ω1 × Ω2) |Π1q = q1,Π2q = q2}

• A sub-manifold of the affine statistical manifold
(M, sp,Bp,Uq

p : p, q ∈ M) is a subset N ⊂ M such that for each
q ∈ N there exists a smooth splitting of the fibre at q,

Bq = Sq N ⊕Rq N ,

and the vector space Sq N is the set of all velocities of curves in N
through q.

• Basic examples of sub-manifolds of the affine statistical manifold are
exponential families and mixture models. Notice that a sub-manifold
of the affine statistical manifold is not forced to be an affine space.

•
◦
Π (q1, q2) is a sub-manifold of the affine statistical manifold on
P> (Ω1 × Ω2).



Velocity of a curve in
◦
Π (q1, q2) I

• Let t 7→ q(t) be a smooth curve of P> (Ω1 × Ω2) with values in the

set of strictly positive transport plans, t 7→ q(t) ∈
◦
Π (q1, q2).

• Recall Fisher’s score properties,

⋆
q(t) =

d

dt
log q(t) =

q̇(t)

q(t)

d

dt
Eq(t) [f ] =

〈
f − Eq(t) [f ] ,

⋆
q(t)

〉
q(t)

.

• For each random variable depending only on one factor

0 =
d

dt
Eqj [fj ] =

d

dt
Eq(t) [fj ◦ Xj ] =〈

fj ◦ Xj − Eq(t) [fj ◦ Xj ] ,
⋆
q(t)

〉
q(t)

= Eq(t) [fj ◦ Xj
⋆
q(t)] .

Hence Eq(t) (
⋆
q(t)|Xj) = 0, j = 1, 2.

• That is,
⋆
q(t) is a q(t)-interaction,

⋆
q(t) ∈ H2(q(t)).



Velocity of a curve in
◦
Π (q1, q2) II

• Conversely, let q ∈
◦
Π (q1, q2) and c12 ∈ H2(q). The curve

t 7→ (1 + tc12) · q is defined for t in a neighborhood of 0, stays in
◦
Π (q1, q2),

E(1+tc12)·q [g ◦ Xj ] = Eq [(1 + tc12)g ◦ Xj ] = Eqj [g ] ,

and the velocity at 0 is c12,

d

dt
log ((1 + tc12) · q)

∣∣∣∣
t=0

=
c12q

(1 + tc12)q

∣∣∣∣
t=0

= c12

Proposition

For all q ∈
◦
Π (q1, q2), the velocities’ fibre equals the vector space of

interactions,

Sq
◦
Π (q1, q2) = H2(q)



Velocity of a curve in
◦
Π (q1, q2) III

• A splitting of the statistical bundle at q ∈
◦
Π (q1, q2) is

SqP> (Ω1 × Ω2) = Sq
◦
Π (q1, q2)⊕ Hajek (q)SqP> (Ω1 × Ω2) .

• That is, the complement fibre Rq

◦
Π (q1, q2) is

Hajek (q)SqP> (Ω1 × Ω2) = H1(q) =

{f1 ◦ X1 + f2 ◦ X2 |Eq1 [f1] = Eq2 [X2] = 0} ,

which in turn provides the exponential family of additive statistics,

exp (f1 ◦ X1 + f2 ◦ X2 − Kq(f1 ◦ X1 + f2 ◦ X2)) · q .

• The splitting suggests the parameterisation of each
q ∈ P> (Ω1 × Ω2) by the margins and an interaction.



◦
Π (q1, q2) as an affine space

• If q, r ∈
◦
Π (q1, q2) and c12 ∈ H2(q) = Sq

◦
Π (q1, q2),

Er

[
mUr

qc12gi ◦ Xi

]
= Er

[(q
r
c12

)
gi ◦ Xi

]
= Eq [c12 gi ◦ Xi ] = 0

that is, q
r c ∈ H2(r) = Sr

◦
Π (q1, q2).

• We have defined a co-cycle of transports

S
◦
Π (q1, q2) =

{
(q, c)

∣∣∣∣ q ∈
◦
Π (q1, q2) , c ∈ H2(q)

}

• The dual transport is computed as follows. If q, r ∈
◦
Π (q1, q2),

c12 ∈ Sq
◦
Π (q1, q2) = H2(q), and d12 ∈ Sr

◦
Π (q1, q2) = H2(r), then〈

mUr
qc , d

〉
r
= Eq [cd ] = ⟨c , d − Hajek (q) d⟩q =

〈
c ,
(
mUr

q

)T
d
〉
q

that is,
(
mUr

q

)T
= (I − Hajek (q)) .



Geodesics

• Let us compute the mixture geodesic. If (q, c) ∈ S
◦
Π (q1, q2), an

m-geodesic is a curve in t 7→ q(t) ∈
◦
Π (q1, q2) with “constant”

velocity.

• Let (q(0),
⋆
q(0)) = (q, c) and

⋆
q(t) = mUq(t)

q c . It follows

q̇(t)

q(t)
=

q

q(t)
c then q(t) = (1 + tc) · q .

The m-geodesic from q in the direction c is t 7→ (1 + tc) · q.
• The affine chart is the geodesic at t = 1:

◦
Π (q1, q2)×

◦
Π (q1, q2) ∋ (q, r) 7→ r

q
− 1

• The e-geodesic from q in the direction c is the solution of

⋆
q(t) = (I − Hajek (q(t)))c .

• A solution of this equation requires the computation of the Hajek
projection.



Gradient of the expected cost

Let us discuss the Optimal Transport OT problem in the framework of
the affine statistical bundle.

• c : Ω1 × Ω2 → R≥ is the cost function and the expected cost
function is

C : P> (Ω1 × Ω2) ∋ q 7→ Eq [c] .

• The function q 7→ C (q) restricted to the open transport model

q ∈
◦
Π (q1, q2) has gradient in S

◦
Π (q1, q2) given by

d

dt
C (q(t)) =

d

dt
Eq(t) [c] =

〈
c − Eq(t) [c] ,

⋆
q(t)

〉
q(t)

=〈(
c − Eq(t) [c]

)
− Hajek (q(t))

(
c − Eq(t) [c]

)
,

⋆
q(t)

〉
q(t)

,

that is,

gradC (q) = (c − C (q))− Hajek (q) (c − C (q))



Gradient flow of the OT cost

• The equation of the gradient flow of C is

⋆
q(t) = − (c − C (q(t))− Hajek (q(t)) (c − C (q(t)))) .

• Notice that the gradient above is the projection onto the space
orthogonal to the space of simple effects. Hence, it is actually well
defined for all q ∈ P (Ω1 × Ω2). If q̂ is a zero of this extended map,
then c equals the sum of two functions in one variable on the
support of q̂.

• If a solution t 7→ q(t) of the gradient flow equation converges to a
transport plan q̄ = limt→∞ q(t) ∈ Π(q1, q2), then Eq̄ [c] is the value
of the Kantorovich optimal transport problem.

• The form of the gradient is compatible with the classical result in
OT: if q̄ is an optimal plan, that the cost is equal to the sum of two
univariate potentials. Cf., e.g., Peyré and Cuturi 2019.


